Forward and retrograde trafficking in mitotic animal cells. ER-Golgi transport arrest restricts protein export from the ER into COPII-coated structures.
نویسندگان
چکیده
Protein transport arrest occurs between the ER and Golgi stack of mitotic animal cells, but the location of this block is unknown. In this report we use the recycling intermediate compartment protein ERGIC 53/p58 and the plasma membrane protein CD8 to establish the site of transport arrest. Recycled ERGIC 53/p58 and newly synthesised CD8 accumulate in ER cisternae but not in COPII-coated export structures or more distal sites. During mitosis the tubulovesicular ER-related export sites were depleted of the COPII component Sec13p, as shown by immunoelectron microscopy, indicating that COPII budding structures are the target for mitotic inhibition. The extent of recycling of Golgi stack residents was also investigated. In this study we used oligosaccharide modifications on CD8 trapped in the ER of mitotic cells as a sensitive assay for recycling of Golgi stack enzymes. We find that modifications conferred by the Golgi stack-resident GalNac transferase do occur on newly synthesised CD8, but these modifications are entirely due to newly synthesised transferase rather than to enzyme recycled from the Golgi stack. Taken together our findings establish for the first time that the site of ER-Golgi transport arrest of mitotic cells is COPII budding structures, and they clearly speak against a role for recycling in partitioning of Golgi stack proteins via translocation to the ER.
منابع مشابه
In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery.
Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the ...
متن کاملOkadaic acid induces selective arrest of protein transport in the rough endoplasmic reticulum and prevents export into COPII-coated structures.
Quantitative immunoelectron microscopy and subcellular fractionation established the site of endoplasmic reticulum (ER)-Golgi transport arrest induced by the phosphatase inhibitor okadaic acid (OA). OA induced the disappearance of transitional element tubules and accumulation of the anterograde-transported Chandipura (CHP) virus G protein only in the rough ER (RER) and not at more distal sites....
متن کاملSequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport
COPI and COPII are vesicle coat complexes whose assembly is regulated by the ARF1 and Sar1 GTPases, respectively. We show that COPI and COPII coat complexes are recruited separately and independently to ER (COPII), pre-Golgi (COPI, COPII), and Golgi (COPI) membranes of mammalian cells. To address their individual roles in ER to Golgi transport, we used stage specific in vitro transport assays t...
متن کاملEndoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells.
In contrast with animals, plant cells contain multiple mobile Golgi stacks distributed over the entire cytoplasm. However, the distribution and dynamics of protein export sites on the plant endoplasmic reticulum (ER) surface have yet to be characterized. A widely accepted model for ER-to-Golgi transport is based on the sequential action of COPII and COPI coat complexes. The COPII complex assemb...
متن کاملSec24- and ARFGAP1-dependent trafficking of GABA transporter-1 is a prerequisite for correct axonal targeting.
The GABA transporter-1 (GAT1) is a prototypical protein of the synaptic specialization. Export of GAT1 from the endoplasmic reticulum (ER) is contingent on its interaction with the COPII (coatomer protein-II) coat subunit Sec24D. Here we show that silencing all four Sec24 isoforms strongly inhibits transport of GAT1 to the cell surface. In contrast, transport of GAT1-RL/AS, a mutant that is def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 112 ( Pt 5) شماره
صفحات -
تاریخ انتشار 1999